CS 24: Introduction to Computing Systems

Memory and Fixed-Width
Integers

FFCAO 111 0DFEBCAFER9I8 328l 3236 22E8HF FFEF FDDIE AF ACEIT EESDIAGUEBC000000)
> S G

S N
S S N N)
& & & & &

Outline

1 Compilation and JVM

2 Memory

3 Integers

4 Adding and Removing Bits

5 Bit Operations

Outline

1 Compilation and JVM

B Memory

B Integers

B Adding and Removing Bits

B Bit Operations

Compilation Process

A ! 01010101
' 11011011
01110111

Hardware Machine Code

64 05 6¢C

Java Virtual Machine Java Bytecode

movl %eax, -12(%rbp)
movl %esi, %eax
addq $16, %rsp

x86-64 Assembly

isub
iconst_2
idiv

Java Bytecode
Instructions

char #x = malloc(sizeof (char));
*x = 'a';

printf("%c\n", x);

free(x);

C Program

public class Hello {
public static void main(String[] args) {
System.out.println("Hello");
}
}

Java Program

Executing Java Code

Preview

Java
lecture.pdf

Program

Project01: Build A TeenyJVM

Overview

In this project, you will implement all the integer JVM instructions. Your

JVM will be able to run real compiled class files.

Learning Outcomes
® | can distinguish between how Java and C execute on a computer.

® | can identify the different levels of expressiveness between
assembly/bytecode and statements in a high-level programming
language.

® | can describe how code can be viewed as a type of data.

B | can write a virtual machine.

Outline

B Compilation and JVM

2 Memory

B Integers

B Adding and Removing Bits

B Bit Operations

Memory Abstraction

Memory, Addresses, and Pointers

® Memory is (essentially) a large array of bytes.

® An address is an index into that array.

® A pointer is a variable that stores an address.

char xp = malloc(sizeof(char));
*p = 42;

printf("p = %p\n", p);
printf("+p = %p\n", *p);
printf("& = %p\n", &p);

1 >> i = ii-
>> &p = 0x04

A Picture of Memory

g~ WN -

OUTPUT

0x2a 0x01

0x0 Ox1 O0x2 0x3 0x4 O0x5 0x6

Memory Abstraction

1 char *xp = malloc(sizeof(char x*));
2 xp = malloc(sizeof(char));
3 xxp = 42;
4 printf("p = %p\n", p);
5 printf("«p = %p\n", *p);
6 printf("*xxp = %p\n", *xp);
7 printf("& = %p\n", &p);
8 printf("&*tp = %p\n", &+*p);
9 printf("*&p = %p\n", *&p);
QUTPUT
>> p = 0x0a
>> *p = 0x04
>> **p = 0x2a
>> =
>> &*p = 0x0a
>> *&p = 0x0a

A Picture of Memory

0 0%

0x0 Ox1 Ox2 0x3 0x4 Ox5 0x6 O0x7 0x8 0x9 OxA OxB 0xC O0xD OxE

	Compilation and JVM
	Memory
	Integers
	Adding and Removing Bits
	Bit Operations

