CS 24: Introduction to Computing Systems

Memory and Fixed-Width
Integers
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Compilation Process
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Hardware Machine Code
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Java Virtual Machine Java Bytecode

movl %eax, -12(%rbp)
movl %esi, %eax
addq $16, %rsp

x86-64 Assembly
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Java Bytecode
Instructions

char #x = malloc(sizeof (char));
*x = 'a';

printf("%c\n", x);

free(x);

C Program

public class Hello {
public static void main(String[] args) {
System.out.println("Hello");
}
}

Java Program



Executing Java Code
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Project01: Build A TeenyJVM

Overview

In this project, you will implement all the integer JVM instructions. Your

JVM will be able to run real compiled class files.

Learning Outcomes
® | can distinguish between how Java and C execute on a computer.

® | can identify the different levels of expressiveness between
assembly/bytecode and statements in a high-level programming
language.

® | can describe how code can be viewed as a type of data.

B | can write a virtual machine.
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Memory Abstraction

Memory, Addresses, and Pointers

® Memory is (essentially) a large array of bytes.

® An address is an index into that array.

® A pointer is a variable that stores an address.

char xp = malloc(sizeof(char));
*p = 42;

printf("p = %p\n", p);
printf("+p = %p\n", *p);
printf("& = %p\n", &p);

1 >> i = ii-
>> &p = 0x04

A Picture of Memory

g~ WN -

OUTPUT

0x2a 0x01

0x0 Ox1 O0x2 0x3 0x4 O0x5 0x6



Memory Abstraction

1 char *xp = malloc(sizeof(char x*));
2 xp = malloc(sizeof(char));
3 xxp = 42;
4 printf("p = %p\n", p);
5 printf("«p = %p\n", *p);
6 printf("*xxp = %p\n", *xp);
7 printf("& = %p\n", &p);
8 printf("&*tp = %p\n", &+*p);
9 printf("*&p = %p\n", *&p);
QUTPUT
>> p = 0x0a
>> *p = 0x04
>> **p = 0x2a
>> =
>> &*p = 0x0a
>> *&p = 0x0a

A Picture of Memory
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