
CS 24: Introduction to Computing Systems
Cache Memories
Last time, we talked about caches as if they were magical devices that knew where memory was, but how do
they actually work? Today, we’ll discuss how addresses are mapped from main memory to cache memories.

Blocks
We split up a cache into blocks which are consecutive chunks of memory of a particular size. The block size
is supposed to be the amount of data the cache can transfer in one read/write. In our examples, we will use a
block size of 4B, but a more realistic size is 64B.

Single Block Cache
The simplest cache imaginable is a single block cache. There is no choice about where to put the block to
cache: they all go in the same place. In effect, this cache is just like a “hardware managed” register. Notably,
to figure out which thing is loaded, we need to keep track of two extra bits (i.e., the high bits of the memory
addresses) which we call “tag” bits. Then, to serve a request, the cache checks the two “tag” bits, and one of
two outcomes occurs:

• If they match, then we just serve the byte requested from the cache using the rest of the address to figure
out which one it is.

• If they don’t match, we forward the request down the memory hierarchy. After the next memory sends
back the result, we update the “tag” two bits and the data, and return it.

0b0000
0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011
0b1100
0b1101
0b1110
0b1111

Main Memory

Cache Memory

__00

Two Block Cache
Now, let’s imagine that our cache has two blocks. Unfortunately, now we have some decisions to make. We
could do either of the following:

• Assign any memory address to any block, like we did previously. In this case, we might have to traverse
through all the blocks only to find that the requested address isn’t there. This should feel very reminicent
of the implicit free list in malloc.

1



0b0000
0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011
0b1100
0b1101
0b1110
0b1111

Main Memory

Cache Memory

__

__

00

10

In this strategy, (called a “fully associative cache”) the bits of the address are split into two parts (like
before): the “tag” and the “offset” into the block.

• Assign half the blocks in main memory to each of the two blocks in cache memory. In other words, we
could split memory up and cache separate pieces of it in separate blocks of the cache.

0b0000
0b0001
0b0010
0b0011
0b0100
0b0101
0b0110
0b0111
0b1000
0b1001
0b1010
0b1011
0b1100
0b1101
0b1110
0b1111

Main Memory

Cache Memory

_

_

0

1

0

1

In this strategy, (called a “direct mapped cache”) the bits of the address are split into three parts: the
“tag”, the “block”, and the “offset” into the block.

Four Block Cache
Now, let’s consider addresses with 8 bit addresses (256B main memory), blocks of 4B, and caches of 16B.
Naturally, we now have four blocks in our cache. Let’s assume it’s a direct-mapped cache to begin with.

2



Breaking down the address, we need two bits for the offset (the rightmost two bits), two bits to indicate which
block, and the remaining bits are the tag. Here is an example of three addresses loaded into this kind of cache:

0b00010010Address:

____
____
____
____

0

0

0 1 2

2

0b00010011Address:
0 3

0b01110100Address:
1 0

3
Blocks

1

2

3

Offsets

Tags

00010001
0111

In this example, the orange and blue addresses were in the same block in main memory; so, the cache only had
to load the data once. But what happens if we try to load two different blocks from main memory that map to
the same cache block?

Noting that direct-mapped caches are more-or-less hash tables (where the block number is the hash code and
the tag is the key), we can use similar collision resolution strategies here. In particular, we can split up the
cache memory into “sets” of associative caches (i.e., fixed-size lists of buckets in the hash table).

At a high level, this strategy is a combination of the other two: we have a hash table with buckets that are
implicit lists. Here is a similar example to the above:

____
____
____
____

0

0 1 2 3
Sets

1

Offsets

Tags

0b00010010Address:
0 2

0b00010011Address:
0 3

0b01110100Address:
1 0

____00010001

0111

3



Replacement and Eviction
In all three strategies, there is still a chance that all the valid spots to place a block from main memory will
be taken. In such a case, we have no choice but to “evict” one of the blocks, but which one? Most hardware
caches implement some version of a Least Recently Used (or LRU) policy. In such a policy, the block that
was least recently read from/written to is chosen to be evicted. (Of course, this requires even more information
to be stored; so, the hardware implements an approximation of this policy.) Additionally, we need to be able to
initialize the cache when the machine is turned on; so, we store a “valid” bit which keeps track of if the data
in that block is usable or not.

4


